- Наружное утепление стен
- Фасадные работы
- Ремонт рустов
- Ремонт температурных швов
- Кровельные работы
- Ремонт дымоходов
- Промышленный альпинизм
- Ремонт входных групп
- Капитальный и косметический ремонт подъездов
- Ремонт ГВС ХВС
- Площадки для ТБО
- Металлоконструкции
- Уборка снега
- Полезная информация
- Благотворительность
- Отзывы
Как подключить люминесцентную лампу к сети — варианты и схемы. Схемы подключения ламп люминесцентных
Подключение люминесцентных ламп: 75 фото вариантов подсоединения
Люминесцентные лампы чаще всего используются в производственных условиях, в магазинах, теплицах и на складах. Для дома их стали покупать только с появлением образцов, имеющих цоколь Е27. При всей экономичности создать оптимальный режим их эксплуатации без дополнительных устройств достаточно сложно, например, когда речь идет о параллельном подключении люминесцентных ламп. В особенностях этого процесса мы и попытаемся разобраться.
Принцип работы
Лампа представляет собой колбу, в которую закачан инертный газ аргон с парами ртути. В конструкции имеется анод и катод. Между ними возникает разряд, вследствие чего происходит загорание в момент пуска.
Разогретые пары ртути начинают излучать инфракрасное свечение, которое не доступно глазу человека. Чтобы перевести свечение в необходимый диапазон, стенки колбы покрывают специальным люминофором. Он активизируется и начинает излучать подходящий глазу свет.
Однако испарение ртутных паров требует иного напряжения, нежели имеется в обычной сети. Способы подключения люминесцентных ламп более сложные.
Дополнительно к электродам запускаются установленные дополнительно электронные и электромагнитные ПРА. Они стимулируют появление нужного скачка напряжения и гарантируют отсутствие неконтролируемого его роста в процессе работы.
Использование стартеров
Для эксплуатации ламп с электромагнитным типом ПРА требуется стартер. Он обеспечивает замыкание в цепи. В результате электроды разогреваются, и происходит зажигание. После нагрева до требуемого уровня цепь размыкается, аргоновый промежуток пробивается.
А вот дроссель в момент замыкания электродов ограничивает ток до нужного уровня, способствует генерированию импульса напряжения для пробоя, а также является важным фактором стабильности горения разряда.
Чтобы подключить лампу надо к ее входу параллельно законтачить стартер. Для этого используют только один штырь на каждой стороне колбы. К оставшимся контактам лампы присоединяется дроссель. Параллельно надо подключить и конденсатор, который компенсирует реактивную мощность и уменьшит помехи.
На фото подключения люминесцентных ламп можно увидеть схему с электромагнитным балластом. У нее существует множество недостатков:
- долгое зажигание;
- пульсирование;
- наличие шумов;
- отсутствие пуска при низких температурах.
Поэтому использование моделей с электромагнитными ПРА сейчас ограничено. Рекомендуется использовать более эффективные устройства.
Работа без стартера
Подключение люминесцентных ламп без стартера производится при помощи пускорегулирующей аппаратуры электронного типа. Поскольку такая лампа является источником освещения с отрицательным показателем сопротивления, то ЭПРА играет роль преобразователя. Высокие токи могут испортить светильник, поэтому пускорегулирующее устройство ограничивает напряжение и сохраняет его в требуемом диапазоне.
Данная схема имеет достоинства. Во-первых, лампочка не мерцает. Во-вторых, шум в процессе работы отсутствует. В-третьих, осветительный прибор остается в рабочем состоянии намного дольше. В-четвертых, ЭПРА более компактна по сравнению с дросселем.
Электронный балласт – это блок с клеммами. Внутри корпуса есть плата. Компактность прибора позволяет его применять в любых по размеру светильниках. При выборе ЭПРА можно подобрать устройство под нужное число ламп и их мощность.
Первый и второй контакты балласта надо подсоединить паре выходов лампы, а третий и четвертый – ко второй паре. Затем на вход надо подать напряжение, лампа будет функционировать.
Подключение на две лампы
Чтобы произвести подключение двух люминесцентных ламп, необходимо ко всем линейным светильникам подсоединить параллельно устройство стартера.
Контакт происходит на два штыря, каждый из которых находится на разных сторонах колбы. Остальные контакты используются для присоединения индукционного дросселя. На них будет подаваться электропитание.
Параллельное подключение конденсатора относительно контактов запитывающего действия позволяет влиять на реактивную мощность и снижать уровень помех.
Использование пускорегулирующих приспособлений позволяет эффективно эксплуатировать люминесцентные светильники в помещениях разного типа. При этом обеспечивается надежность и долговечность работы, компенсируются скачки напряжения.
Современное оборудование позволяет облегчить подключение люминесцентной лампы к выключателю, однако работы связанные с этой задачей требуют от исполнителей электротехнических навыков.
Фото подключения люминесцентных ламп
mojdominfo.ru
Установка люминесцентного светильника
Сразу же бросаются в глаза поворотные разъемы – гнезда, для цоколя люминесцентных ламп T8 (G13) с подходящими к ним проводами, просто лежащие вдоль внутренней поверхности основания.
Устанавливаем их в специально предназначенные для этого прорези - пазы в монтажной панели. При этом перепутать что-то у вас вряд ли получится, различная длина проводов не позволит вставить разъемы неправильно.
Если у вас остаются какие-то сомнения в правильности монтажа гнезд для ламп, всегда можно посмотреть на корпусе балласта схему подключения и перепроверить.
В конечном итоге, разъемы для люминесцентных ламп T8 с цоколем G13, должны быть установлены в монтажной панели так, как показано на изображении ниже и обращены друг к другу.
Далее убираем основание на время в сторону и переходим к креплению корпуса на стену. Вообще, универсальная конструкция крепежных элементов люминесцентного светильника, позволяет с легкостью устанавливать его как на горизонтальных поверхностях (на стенах), так и вертикальных (потолок и пол). Мы будем выполнять установку светильников для люминесцентных ламп на стенах гаража.
Измеряем расстояние между центрами площадок на тыльной стороне корпуса светильника, за которые затем цепляются крепления и удерживают светильник на стене/потолке. У нашего люминесцентного светильника Айсберг, расстояние между центрами крепежа 915мм (91,5 см).
Выбираем центр установки светильника на стене и откладываем от него половину этой величины (457,5мм) влево и вправо. Для большей точности, при разметке лучше всего пользоваться уровнем, очень удобно использовать лазерный нивелир.
С помощью дюбеля (пробки) и самореза с прессшайбой, фиксируем крепления люминесцентного светильника на стене, в отмеченных нами местах, как показано на изображении ниже.
В зависимости от типа основания, куда производится монтаж, выбирайте соответствующие варианты крепежа. В нашем случае осветительный прибор устанавливается на кафельную плитку, соответственно предварительно в ней были сделаны отверстия специализированным сверлом. Таким образом устанавливаем оба крепления, строго на одной горизонтальной оси.
Берем корпус светильника и вырезаем в нем отверстие для вводного кабеля, в предназначенном производителем месте. Вообще таких мест несколько в том числе в торце светильника и на задней стенке. В зависимости от того, как проложен питающий кабель, выбирается место его ввода в светильник.
Для надежной герметизации, все открытые отверстия закрываются специальными мембранами, которые идут в комплекте. Под вводной кабель эта мембрана подрезается. После чего корпус светильника монтируется на стену, для его необходимо «прищелкнуть» к уже установленным креплениям. Обязательно убедитесь в отсутствии напряжения на проводе, перед началом монтажа отключите автоматические выключатели в распределительном щите.
Теперь подготавливаем питающий кабель, снимая с него изоляцию и зачищая жилы проводов на 5-7мм. Схему подключения люминесцентного светильника мы уже описывали в статье «Схема подключения люминесцентного светильника», в которой так же показано как выполнить электропроводку для него, соединить провода в распределительной коробке и внутри светильника.
Подключаем питающий провод в вводные клеммы, расположенные на монтажной панели.
В клемму с маркировкой L – подключается фазный провод - БелыйВ клемму с маркировкой N – подключается провод рабочего нуля – Голубой.
Как определить какой из проводов фаза, ноль, а какой заземление самостоятельно, вам поможет наша подробная инструкция - ЗДЕСЬ.
Если корпус светильника выполнен из токопроводящего материала, необходимо будет подключить и защитный ноль – заземление, обычно это желто-зеленый провод. В нашем случае, светильник Айсберг выполнен полностью из диэлектрического пластика, подключение заземления не требуется.
После того как все провода подключены к светильнику, устанавливаем монтажную панель в корпус. Для этого просто необходимо совместить отверстия на монтажной панели – основании, с крепежными клипсами корпуса.
Далее устанавливаем люминесцентные лампы. Лампы необходимо покупать отдельно, в комплекте со светильником они не поставляются!
Для того, чтобы люминесцентную лампу T8 с цоколем G13 установить в светильник, необходимо поместить ее в гнезда, таким образом, чтобы каждая из пар штырьков цоколя, попала в паз гнезда (как показано на изображении ниже), после чего необходимо провернуть лампу на 45 градусов в любую сторону и она зафиксируется.
После установки люминесцентных ламп в светильник, уже можно проверить его работоспособность, включив подачу электричества. Если все было сделано верно, лампы должны зажечься.
Теперь осталось установить светопрозрачный рассеиватель. Как правило, рассеиватель крепится к корпусу люминесцентного светильника с помощью фиксаторов, которые надежно прижимают компоненты между собой и при необходимости позволяют с легкостью снять рассеиватель, без использования какого-либо инструмента.
Конструкция светильников «Айсберг» разработана таким образом, что фиксаторы изначально крепятся на рассеивателе, у других производителей нередко они могут быть установлены на корпусе.
После того, как все фиксаторы установлены на своих местах, прикладываем рассеиватель к светильнику и защелкиваем их.
На этом установка люминесцентного светильника на стену завершена.
Теперь, нажав клавишу выключателя, можно проверить его работу, светильник должен загореться с еле заметной задержкой.
Как вы видите, монтаж светильников для люминесцентных ламп, вполне по силам каждому. В любом случае, вы всегда можете обратиться к профессионалам электрикам или монтажникам, которые выполнят эту работу быстрее, но знание технологии установки вам пригодиться для контроля качества выполненных работ и оценки их стоимости.
Кстати, лампы дневного света довольно просто можно заменить на светодиодные, схему такого усовершенствования вы найдёте в нашей статье - ЗДЕСЬ.
Если же у вас остались какие-то вопросы по монтажу люминесцентных светильников, оставляйте их в комментариях к статье, постараемся вам помочь.
rozetkaonline.ru
Схема подключения люминесцентных ламп - варианты и особенности
Популярность применения люминесцентных ламп обусловлена несколькими факторами. Важнейшими из них являются их экономичность, эффективность работы, а также равномерный свет, испускаемый с достаточно большой площади поверхности. Но помимо этих качеств необходимо знать правила подключения люминесцентных ламп. Для этого применяется несколько типов схем и дополнительных устройств.
Особенности функционирования люминесцентных приборов
В основу работы этих источников света заложен эффект формирования ИК излучения парами ртути под воздействием электрического разряда. На практике для этого в стеклянную колбу помещают спиральную пару катод-анод, внутреннюю поверхность лампы обрабатывают люминофорным раствором. Затем происходит наполнение конструкции сложной смесью, основным компонентом которой являются пары ртути.
При подаче электротока возникает разряд, который и приводит к свечению лампы. Но в отличие от аналогичных моделей накаливания величина разряда должна быть четко нормированной. Только при соблюдении этого условия возможен равномерный процесс формирования света.
Для осуществления этого применяют два типа приборов:
- ЭмПРА – пускорегулирующий аппарат. Он более известен как дроссель. Может использоваться в паре со стартером.
- ЭПРА. Более надежный и технологичный способ контроля работы люминесцентной лампы. Его применение практически полностью исключает характерное мигание лампы.
В настоящее время большее распространение получили схемы с установкой ЭмПРА. Это связано с их дешевизной и возможность реализации подключения нескольких ламп.
Специфика применения ЭмПРА
Для применения электромагнитного запуска понадобятся компенсационный конденсатор, дроссель и стартер. В целях обеспечения надежности функционирования схемы вся внутренняя проводка должна быть выполнена проводами ПУГВ.
Схема для одной лампы
Для лучшего понимания необходимо рассмотреть все этапы включения:
- После замыкания контакта К происходит подача электрического тока на стартер. Он представляет собой небольшую газоразрядную лампу. При этом в ней начинает формироваться тлеющий разряд, значение напряжения которого меньше чем в сети, но больше нормированного для основного прибора освещения.
- Затем происходит тепловое расширение электродов, в результате которого они соединяются, образуя электрическую цепь. Величина тока, протекающего по ней, напрямую зависит от параметров дросселя. Он должен превышать номерованный для лампы в 1,5-2 раза.
- В это время происходит предварительный разогрев пары катод-анод в лампе для формирования разряда в газовой среде. После размыкания электродов дросселя появляется высокий ток самоиндукции. Конденсатор снижает эту величину до нужного уровня.
- Резкий рост напряжения провоцирует появление в колбе большого количества заряженных частиц, которые и приводят к формированию плазмы и как следствие – газового разряда.
По такому же принципу можно сделать соединение двух люминесцентных ламп. Процессы, протекающие в этой цепи, практически полностью аналогичны вышеописанным.
Подключение двух световых приборов
К недостаткам такого способа подключения относят небольшой срок службы дросселей и стартеров. Это связано со спецификой процессов, которые происходят в них.
Подключение с помощью ЭПРА
Намного эффективнее использовать ЭПРА – электронный пускорегулирующий аппарат. Его принцип работы отличается от ЭмПРА. Это устройство подает на контакты лампы высокочастотное напряжение, величина которого может варьироваться от 25 до 130 Гц.
Для правильного подключения прибора достаточно предварительно ознакомиться с инструкцией. В большинстве случаев схема подсоединения состоит из следующих этапов.
- Подключение контактов к электросети.
- Соединение проводов с клеммами нитей накалов. Для каждой из них потребуется два контакта.
Преимущества применения этого пускового устройства заключаются в существенной экономии электроэнергии, увеличении срока службы, а также полного отсутствия мерцания и характерного для люминесцентных осветительных приборов шума.
electroadvice.ru
Схема подключения люминесцентных ламп и принцип их работы
На сегодняшний день люминесцентные лампы являются одним из самых распространенных источников искусственного освещения. Это объясняется тем, что светильники данного типа в несколько раз более экономичнее, чем привычные нам стандартные приборы накаливания и на порядок дешевле светодиодных.
Люминесцентный вид на сегодняшний день встречаются чуть ли не на каждом шагу: в офисах, больницах, школах и домах.
Как работает
Люминесцентная лампа представляет собой газоразрядный прибор, внутри которого и образуется этот разряд среди пары спиралей. Данные спирали есть не что иное, как анод и катод, расположены они с обеих сторон. Видимый свет появляется при ультрафиолетовом излучении парами ртути. Этому способствует нанесенный на внутреннюю поверхность лампы люминофор – вещество, в составе которого имеется фосфор и другие элементы.
Люминесцентные лампы работают благодаря специальному устройству –пускорегулирующему аппарату, который по-другому называется дроссель. Многие модели импортного производства функционируют как со стандартным дросселем, так и с устройством автоматической работы. Последние распространены как электронные пускорегулирующие автоматы.
Преимущества приборов, работающих на ЭПРА
Среди положительных качеств данных моделей можно выделить следующие:
- отсутствие мерцания;
- отсутствие шума;
- относительно малый вес;
- лучшее зажигание;
- экономия электроэнергии.
Каждая люминесцентная лампа имеет ряд преимуществ перед стандартной лампой накаливания:
- долговечность;
- экономичность;
- большая светопередача.
Однако у данной технологии есть и существенный недостаток – если температура в помещении не больше, чем пять градусов, зажигание такой лампы происходит медленно, а свет от нее более тусклый.
Схема подключения
Существует несколько схем подключения люминесцентных светильников.
Если используется электронная пускорегулирующая аппаратура, схема подключения выглядит следующим образом:
- С – компенсационный конденсатор;
- LL– дроссель;
- EL– лампа люминесцентная;
- SF– стартёр.
Как правило, на практике наиболее распространены светильники, в которых используются два прибора, подключенные последовательно. При этом схема их подключения имеет вид:
А – для люминесцентных моделей мощностью 20 (18) ВТ
В – для люминесцентных моделей мощностью 40 (36) ВТ
Когда применяются именно две лампы, появляется возможность уменьшения пульсации суммарного светового потока. Это происходит из-за того, что пульсация отдельно взятой лампы неодновременная, то есть имеется небольшой сдвиг по времени. В связи с этим никогда не станет равным нулю значение суммарного светового потока. Другое название схемы, когда применяется сразу два светильника – это схема с расщепленной фазой. Важным ее преимуществом является то, что при ней не требуется дополнительных мер с целью повышения коэффициента мощности. Еще одним преимуществом является то, что при снижении напряжения в сети, суммарный световой поток остается стабильным.
При подключении обязательно следует учитывать, что мощности дросселя и лампы должны быть идентичными. Если же мощность второй велика, то возможно стоит использовать сразу два дросселя.
Однако, несмотря на все явные достоинства, следует указать еще один существенный недостаток таких моделей. Все они содержат такое небезопасное вещество, как ртуть в жидком виде. На сегодняшний день существует проблема утилизации подобных устройств, вышедших из строя, поэтому использование люминесцентных ламп представляет угрозу окружающей среде.
Если при монтаже светильник нечаянно выскальзывает из рук и разбивается вдребезги, можно увидеть мелкие шарики ртути, которые раскатываются по земле.
Далее описана подробная схема подключения в комплекте с электромагнитным балластом.
- Подается питающее напряжение на схему. Затем оно проходит через дроссель и нити накала, а следом – к выводам стартера;
- стартер – есть не что иное, как неоновая лампочка, имеющая два контакта. На один из данных контактов приваривается биметаллическая пластина;
- возникающее напряжение начинает ионизировать неон. Сквозь стартер начинает течь ток значительно силы, разогревающий газ и пластину из биметалла;
- пластина при этом начинает изгибаться и замыкать выводы стартера;
- электрический ток проходит по замкнутой цепи, благодаря чему нити накала разогреваются;
- этот разогрев и дает толчок для возникновения в лампах свечения в условиях более низкого напряжения;
- в момент, когда лампа начинает светиться, на стартере начинает падать напряжение. Падает оно до такого уровня, когда ион уже не способен ионизироваться. Стартер при этом автоматически отключается, а нити накала перестают быть под влиянием тока.
С целью обеспечить функционирование светильников, устанавливают дроссель. Данный прибор используется с целью ограничивать ток до необходимой величины, в зависимости от мощности. Благодаря самоиндукции обеспечивается надежный пуск ламп.
Плюсы и минусы ламп, имеющих электромагнитный балласт
Конструкция и схема данных светильников достаточно проста. Однако, несмотря на это их отличает высокая надежность и сравнительно небольшая стоимость, но у них имеются и недостатки.
Среди них:
- нет гарантии запуска при пониженной температуре;
- мерцание;
- вероятность низкочастотного гула;
- повышенное потребление электроэнергии;
- достаточно большой вес и габариты.
Люминесцентные светильники компактного типа
Многие современные лампы люминесцентного типа подходят для освещения промышленных помещений. Однако для домашнего использования они неудобны вследствие больших габаритов и неподходящего дизайна. Технологии не стоят на месте и сегодня созданы такие приборы, которые имеют малогабаритный электронный балласт. Патент на компактную люминесцентную лампу был получен в 80-х годах прошлого века, однако использоваться они стали в быту не так давно. Сегодня по размеру компактные люминесцентные модели не превышают привычных стандартных. Что касается принципа работы, то он остался прежним. На концах лампы есть две нити накала. Именно между ними и появляется дуговой разряд, который производит ультрафиолетовые волны. Под воздействием данных волн происходит свечение люминофора.
Сколько служит компактная лампа
Компактная лампа по заявлениям производителя, должна служить около десяти тысяч часов. Однако из-за постоянной нестабильности напряжения в сети,срок службы устройств значительно сокращен. На уменьшение срока службы влияет и частота включения и выключения в схеме, а также функционирование в условиях повышенных либо, наоборот, слишком низких температур. По статистике самой частой причиной выхода таких устройств из строя является перегорание нитей канала.
bouw.ru
Подключение люминесцентных ламп и их замена
Светильники на основе трубчатых люминесцентных ламп всё ещё востребованы в офисных и производственных помещениях, в гаражах и мастерских, остались в качестве наследия в постройках советской эпохи. Несмотря на очевидные недостатки, такие как большие габариты, гудение во время запуска и работы, нестабильное свечение и мерцание в зависимости от колебаний напряжения, некоей сложности подключения, будет экономически нецелесообразно менять продолговатые лампы дневного света на компактные, если электронная начинка светильников в порядке, и требуется только замена люминесцентных ламп.
Дело в том, что принцип работы газоразрядных источников света, как и их энергопотребление не зависит от размера и формы, а стоимость трубчатой лампы без покупки электронных составляющих будет намного меньше, чем установка стандартного патрона и приобретение компактного светильника, включающего необходимую электронику.
контакты лампы
Поэтому, стоит задуматься, как проверить люминесцентную лампу и сопутствующие устройства прежде, чем переходить на другие типы светильников.
Принцип действия и схемы подключения
Для начала нужно разобрать принцип работы люминесцентного электроосветительного прибора. Тлеющий разряд в атмосфере инертных газов с примесями паров ртути вызывает свечение в ультрафиолетовом спектре, которое преобразуется в видимый свет при помощи люминофора, нанесённого на внутреннюю стенку колбы.
разновидности люминесцентных ламп
Для запуска разряда (электрического пробоя, после которого газ ионизируется и становится проводником электрического тока) нужен импульс высокого напряжения между катодами газоразрядных ламп низкого давления, о подключении и замене которых говорится в данной статье.
общая схема люминесцентного светильника
Для запуска и работы данных светильников, широко применяются две схемы включения, с использованием:
- Электромагнитного балласта (электромагнитного пускорегулирующего аппарата – ЭмПРА) и стартера;
- Электронного балласта (электронного пускорегулирующего аппарата – ЭПРА).
Схема с ЭмПРА
Алгоритм запуска люминесцентной лампы одинаков у обоих вариантов, но схема с ЭмПРА (дросселем)
схема с дросселем и стартером
и стартером более наглядная. При подаче напряжения катоды разогреваются, после чего происходит бросок высокого напряжения (около 1кВ) и происходит электрический пробой в газе и в нем начинает протекать ток.
Разогрев катодных электродов происходит благодаря стартеру, подключённому последовательно с нитями накала катодов, в цепь которых также подключён дроссель ЭмПРА.
В стартере имеется герметичная стеклянная колба с биметаллическими контактами,
стартер
между которыми при подаче напряжения начинает происходить тлеющий разряд, разогревающий нормально разомкнутые контактные пластины.
Разогретые контакты замыкаются, и ток течёт по нитям накала катодов лампы, разогревая их.
Спустя несколько секунд биметаллические контакты стартера охлаждаются и размыкаются, вызывая резкий индукционный бросок напряжения из-за индуктивности дросселя – в этот момент лампа начинает светиться.
ЛДС 20 Вт
Конденсаторы используются для компенсации реактивной мощности и сглаживания электромагнитных помех.
Схема с ЭПРА
В ЭПРА генерируется ток высокой частоты, и алгоритм запуска и работы лампы запрограммирован в электронной схеме.
пускорегулирующий аппарат разобранный
Благодаря ЭПРА можно осуществлять также холодный мгновенный запуск люминесцентных ламп, который уменьшает срок эксплуатации газоразрядных светильников, но может продлить их службу в случае перегорания или вырождения катодов, о чём свидетельствует почернение у торцов трубки.
электронный пускорегулирующий аппарат
Возможность холодного запуска и способ его осуществления должен указываться в паспорте аппарата. Схема с ЭПРА всегда имеется на корпусе устройства, следуя ей в точности, можно самостоятельно подключить люминесцентный светильник.
Схема подключения
Поскольку ЭПРА более экономичны и создают меньше шума и электромагнитных помех, то они постепенно вытесняют устаревшие дроссели.
Замена перегоревшей лампы
Если проблема только в том, как заменить люминесцентную лампу, без подключения электронных компонентов, то нужно сначала разобрать светильник, и соблюдая осторожность, повернуть трубку по её оси. Направление вращения можно посмотреть на держателях, или определить опытным путём.
замена лампы
Повернув стеклянную трубку на 90º, её опускают вниз, чтобы контакты прошли через прорези в держателях.
Контактодержатель лампы
Новую лампу ориентируют, чтобы контакты были в вертикальной плоскости и вошли в прорезь, после чего трубку поворачивают в обратном направлении. Включив питание, убеждаются в нормальном запуске работе светильника, после чего вставляют на место рассеивающий плафон.
Перегоревшую лампу утилизируют, или пробуют «реанимировать» методом холодного запуска.
Как проверить люминесцентную лампу и компоненты
Подключая люминесцентный светильник, нужно быть уверенным в работоспособности лампы и пускорегулирующих аппаратов. Для этого необходимо тестером проверить нити накала катодов – сопротивление у них должно быть в пределах 10 Ом.
Если тестер показывает бесконечное сопротивление,
то не стоит выбрасывать лампу – её можно эксплуатировать ещё некоторое время в режиме холодного запуска. Контакты стартера в нормальном состоянии разомкнуты, а его конденсатор постоянный ток не проводит, то есть, при прозвонке сопротивление должно быть максимально большим – десятки и сотни МОм.
При касании щупами омметра выводов дросселя, сопротивление должно плавно уменьшаться до постоянного значения, свойственного обмотке, в пределах несколько десятков Ом.
К сожалению, при помощи обычного омметра невозможно выявить межвитковое замыкание в обмотке дросселя, но, если в мультиметре есть измерение индуктивности, и известны параметры ЭмПРА, то при несоответствии значений можно выявить данный дефект.
На неисправность дросселя также указывает перегорание только что установленной новой лампы. Поскольку в электронном пускорегулирующем аппарате присутствует сложная схема с множеством элементов,
электронная схема блока
то протестировать его при помощи мультиметра нет никакой возможности.
Похожие статьи
infoelectrik.ru
Действие люминесцентных лампОсновано на излучении потока света, возникающего при свечении люминофора, на который воздействует ультрафиолетовое излучение, происходящего внутри колбы электрического разряда. В светильниках современных конструкций применяются лампы самых различных форм и мощности. Цвет свечения лампы полностью зависит от состава люминофора. Светильники последнего поколения запускаются с помощью электронных пускорегулирующих аппаратов. Такие светильники работают бесшумно, обеспечивая для глаз благоприятное освещение. До сих пор используются светильники с пусковыми устройствами в виде дросселей и стартеров. В таких схемах используют и конденсатор. На схеме видно, как правильно подключить люминесцентную лампу с использованием стартера и дросселя. При использовании двух люминесцентных ламп, мощностью 18 ватт применяется другая схема с использованием одного дросселя, мощностью 36 ватт и стартера марки S2. Люминесцентные светильники являются самыми экономичными. Они обеспечивают равномерное освещение площадей, практически, любых размеров. Виды светильниковСовременные люминесцентные светильники имеют различную конфигурацию и в зависимости от их целевого использования подразделяются на следующие категории. Накладные
Аварийные
Встраиваемые
Преимущества люминесцентных светильников перед обычными лампамиЯвляется гораздо более высокий коэффициент полезного действия, более эффективная световая отдача и в 8-10 раз более длительный срок службы. В процессе работы они не нагреваются выше 500С и гораздо менее чувствительны к перепадам напряжения. Правильный выбор ламп и светильников обеспечивает освещенность, наиболее приближенную к естественной. Их недостатком является невозможность регулировки их светового потока с помощью регулятора напряжения – диммера. Подключение двух люминесцентных ламп через один дроссель |
electric-220.ru
Адрес:
603034 Нижний НовгородЛенинский район ул. Ростовская
д.13 офис №2
Телефон:
(831) 216-17-138(987) 544-18-81
email:
[email protected]COPYRIGHT © 2018
Все права защищены